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ABSTRACT

The paper presents the cartographic processing of the Landsat TM image by the two unsupervised classification methods of SAGA
GIS: ISODATA and K-means clustering. The approaches were tested and compared for land cover type mapping. Vegetation areas
were detected and separated from other land cover types in the study area of southwestern Iceland. The number of clusters was
set to ten classes. The processing of the satellite image by SAGA GIS was achieved using Imagery Classification tools in the
Geoprocessing menu of SAGA GIS. Unsupervised classification performed effectively in the unlabeled pixels for the land cover
types using machine learning in GIS. Following an iterative approach of clustering, the pixels were grouped in each step of the
algorithm and the clusters were reassigned as centroids. The paper contributes to the technical development of the application of
machine learning in cartography by demonstrating the effectiveness of SAGA GIS in remote sensing data processing applied for
vegetation and environmental mapping.
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M3BO/J

Y paay je npeacraBsbeHa kKapTorpadcka o6pasa Landsat TM ciuke nmoMmohy ABe HeHajr/ieJaHe MeToJie Kiaacudukanuje SAGA
GIS: ISODATA u K-mean rpynucame. [IpucTynu cy TecTHpaHU U ynopeheHM 3a Manupame THUIOBAa 3eMJ/bULIHOI MOKPHBAYa.
[logpydja Bereranuje OTKPHMBEHA Cy M OJBOjeHAa OJi OCTaJMX BPCTa 3eMJ/bMLIHOI NOKPHMBaya y HCTPaXMBAHOM IOAPYYjy
jyrosanmagHor Vcianga. bpoj kiactepa noctaBsbeH je Ha JeceT kiaca. O6paja catesuTcke cauke noMohy SAGA GIS mocturayra
je moMohy ajiaTa 3a kJacMpUKaLUjy CIMKa y MeHHjy 3a reompouecupame SAGA GIS. Henaarsenana kiacudukanyja je 6uia
ebuKacHa y HeoGeJieXXeHUM IHMKCeJMMa 3a TUIOBe IOKpPHBaya 3eM/bUIITAa KopucTehn MammuHcko ydewe y GIS-y. Cremehmn
WTepaTHBHH NMPHUCTYIN KJIAacTepUCama, IUKCeJU Cy TPYNHUCaHH y CBAaKOM KOpaKy aJrOpUTMa M KJacTepH Cy MOHOBO A0Je/beHH
Kao LeHTpOoUAU. Paj JonpuHOCH TeXHUYKOM pasBojy NMpUMeHe MAIlWHCKOT yuyewa y KapTorpaduju nokxasyjyhu eduxacHoct

SAGA GIS y o6pasiy nojjaTaka ja/bMHCKUM UCIIUTUBakbEM IPUMEHEHUM 32 MallUpakbe BereTaluje U )KUBOTHE CpeJIuHE.

KibyuHe peun: SAGA GIS, manupame, Beretauuja, K-means, ISODATA, rpynucame, kKapTorpaduja, MallMHCKO YYeHe.

1. Introduction

Vegetation mapping is one of the most important
tools for environmental monitoring. Using remote
sensing data processed by GIS is the fastest way that
helps land cover types to be visualized and assessed.
There are various GIS applications for thematic
vegetation mapping (Klauco et al, 2013a, 2013b;
Lemenkova, 2011). The specific geologic setting
including volcanism in the southwestern part of
Iceland (Figure 1) resulted in the development of
erosion prone soils and fragile vegetation (Eckert and
Engesser, 2013; Eddudottir et al, 2020). Together
with climate impact, ice cover change (Blauvelt et al.,
2020; Cabedo-Sanz et al,, 2016) and overgrazing, this
affected Arctic landscapes and land cover (Lehnhart-
Barnett and Waldron, 2020).
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The goal of this paper is to present the processing
of the Landsat TM image covering the study area i.e.
Iceland (Figure 2). Landsat TM images are widely
used in environmental studies due to the accessibility,
repeatability of survey and coverage (Bryant et al.
2002; Lymburner et al. 2013). The aim is to highlight
the distribution of various land cover types. Technical
approaches include ISODATA ie. Iterative Self-
Organizing Data Analysis (Memarsadeghi et al., 2007)
and K-means image classification (Fard et al., 2020;
Pefia et al., 1999; Zhao et al.,, 2020; Bottou and Bengio,
1995), which aim at grouping image pixels into
classes of similar properties representing land cover
types.

Cartographic processing is based on SAGA GIS
(Conrad, 2006; Hengl et al., 2009). Clustering methods
are widely used in geosciences for grouping data
using similarity properties (Davies and Bouldin, 1979;
Filippone et al, 2008; Forgy, 1965; Lemenkova,
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2020a). The methods are based on the unsupervised
approaches of pixel-based classification, which
implies the machine learning approach in remote
sensing data processing. These classification
techniques can be used to monitor environmental
changes such as land degradation or deforestation.

2. Materials and methods

The pixel-based classification approach involves
the determination of a spectral response (that is, a
digital number, DN) for each pixel of a satellite image.
Using the selected mathematical algorithm (ISODATA
or K-means), it automatically groups pixels into a
class based on the similarities of their DN values. Both
methods of unsupervised classification are referred to
as cluster analysis in SAGA GIS. The theoretical
background of cluster analysis is based on the

principle of data grouping and sorting by
mathematical algorithms (Rubin, 1967). The
methodology of this work consists in the following
workflow.

2.1. Image Destriping

A Landsat TM image was loaded to SAGA GIS and
noise corrected using the ‘Destriping’ procedure by
the path ‘Geoprocessing > Grid > Filter > Destriping’.
The destriping filter removed the straight parallel
lines in the raw Landsat TM raster scene by using two
low-pass filters elongated in the stripes direction: the
one with a pixel unit wide and the one with a striping
wavelength wide (Oimoen, 2000). The difference
indicated a striping error, which was removed from
the original Landsat TM image.
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Figure 1. Monochrome image, SAGA GIS.
2.2. Color Band Composites

The next step included loading Landsat TM bands
and generating synthetic images based on the

S & B ] WY ] Yo 2
A U i

o 1822 38 et 0225
1B 0 212 3001 et 5

100000 120000 140000 160000 180000 200000 220000 240000 2|

(]

100000 120000 140000 150000 180000 200000 220000 240000 2600

20000 40000 60000 80000

000080000

40000

100000170000 140000 160000 180000 200000 220000

20000

]

o

Figure 2. RGB color composite image, SAGA GIS.

available Landsat bands. The menu of the SAGA GIS
used for testing various combinations of the image is
presented in Figure 3.
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Figure 3. Menu of SAGA GIS and visualized image (Here: Bands R6-G5-B4)
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The workflow included the creation of a false
color composite (Figure 4) and a natural color
composite (Figure 5). For the Landsat TM multiband
imagery, three bands in R, G, and B were displayed in
color combination from various monochrome bands.
A true (natural) color image is composed of the RGB
combinations. Using near-infrared bands (NIR), more
information (e.g, land-water contrast, vegetation)
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Figure 4. False color composite
2.3. ISODATA Clustering

Unsupervised classification was performed using
the SAGA GIS path: Geoprocessing> Imagery>
Classification> Unsupervised> ISODATA Clustering for
grids (Figure 6). The selected bands were 3,4,5,7 as
input bands. Afterwards, the K-means cluster grid was
reclassified to land cover classes using the SAGA GIS
path: Grid> Values> Reclassify Grid Values. Finally, the
statistics on the land cover classes was visualized.

ISODATA clustering, an unsupervised pixel
classification method by SAGA GIS, was used for
detecting and mapping the land cover classes of
southwestern Iceland. Image bands were selected to
be used in the assignment of bands for ISODATA
clustering and the number of eventual output classes
was defined as 10.

The SAGA GIS solution of ISODATA clustering was
used to solve the problem of a large amount of
unlabeled pixels for land cover types. Since the
training pixels of supervised classification require

was added. The blue channel was used for a false
color composite. The combination presented in Figure
5 shows bright cyan-colored ice and glacier areas,
dark (black) colors for water and natural looking
landscapes (green for vegetation areas and brown for
bare soils). The false color composite in Figure 4
shows ice covered areas as bright red, useful for
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Figure 5. Natural color composite. Bands: R7-G4-B2

fieldwork data observations, unsupervised
classification performs better for a distance based
data analysis.

Understanding the meaning of land cover types
behind the pool of pixels on a Landsat TM scene
requires a machine learning algorithm that classifies
these pixels into groups based on the patterns it finds.
The unsupervised learning of ISODATA conducts an
iterative process, analyzing pixels without the
intervention of a cartographer. The key approach of
ISODATA relies on the assumption that each class has
a multivariate normal distribution. Therefore, it uses
class means and a covariance matrix for each class. In
case of complicated landscapes, there can be many
variables in vegetation and mixed land cover types,
which can make hand-made supervised classification
a difficult process. Instead, the machine-learning
classifiers ISODATA and K-means, based on the
clustering and association of pixels on a Landsat TM
scene, are applied to identify land cover classes
automatically.
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Figure 6. Menu of ISODATA clustering, SAGA GIS
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2.4. K-means Clustering

The K-means method is another widely used
approach of unsupervised classification. These classes
were assigned as 10 machine-defined classes and then
reclassified as post-processing as ‘land cover classes’
by reference to ground data (Figure 7). In contrast to
supervised classification, both ISODATA and K-means
do not require defining ‘training sites’ of the land
cover type. This presents a higher level of machine
learning in a cartographic workflow. The automation

and methods of machine learning are commonly used
in geosciences.

The iterative process of image processing by K-
means clustering in SAGA GIS leads to an
improvement in the associations of pixels into cluster
groups by machine learning. The SAGA GIS divides the
pixels from the Landsat TM image and groups them
into the assigned number of classes. The K-means
based classifications were fast and efficient. However,
some drawbacks include errors from misclassified
pixels caused by cloudiness.
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Figure 7. Menu of K-means clustering, SAGA GIS
3. Results and discussions the Landsat TM for optimal classification

The resulting maps show the unsupervised
techniques of ISODATA (Figure 8) and K-means
(Figure 9). The results determine 10 classes within
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performance. The maps keep spatial resolution and
texture in the image. K-means clustering was

reclassified (Figure 10) for the land cover classes with
the assigned types.
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The difference in performance consists in the
mathematical approach of the k-means algorithm,
which aims at the placement of the centers that
minimizes the average squared distance of each point
to its nearest center (Likas et al. 2003). ISODATA tries
to treat each class in a multivariate normal
distribution, and computes class means and a
covariance matrix for each class (Figure 11).

The algorithm of the K-means is implemented in
the most straightforward manner, assuming that the
number of clusters, k, is much smaller than the total
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Figure 9. K-means cluster analysis for grids

number of pixels in a scene (Pollard, 1982) (Figure
12). Hence, the performance of the algorithm is more
time-consuming compared to ISODATA. As with
ISODATA, the time of algorithm performance is
explained by the time required to compute the cluster
center nearest to each pixel in an image (Jainand and
Dubes, 1988).

The principles of ISODATA classification based on
the iterative approach have the following nature:
pixels are being grouped in each iteration of the
algorithm: pixels in an image are assigned to their
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closest (nearest) cluster centers. Afterwards, cluster
centers are reassigned to be the centroid of these
associated points.

The next resulting step includes clusters with
very few deleted points. Finally, larger clusters
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Figure 10. Reclassified map of K-means clustering
4. Conclusions

The demonstrated advantage of machine learning
in cartographic data processing over supervised
classification in image analysis consists in the
automation of data processing. Due to the geometric
complexity of contours and fragmentation of many
landscapes, the patterns and associations of land
cover types may be easily overlooked by a human eye.

Better accuracy and reliability result from
automation, which is part of machine learning. The
machine learning applied in cartographic workflow
enables GIS to train on datasets before data
processing (Lemenkova, 2019a, 2019b; Schenke and
Lemenkova, 2008). Machine-learning approaches in
geosciences include advanced statistical analysis,
numerical data processing and applied programming
(Chavez et al. 1982; Lemenkov and Lemenkova,
2021a, 2021b; Clark and Roush, 1984; Klauco et al,,
2014, 2017; Lemenkova, 2019c, 2019d, 2021a;
Jensen, 2005).

The comparison between the ISODATA and K-
means approaches showed that ISODATA operates
more slowly, particularly with several processed
bands, while the K-means algorithm is a faster
method. Both algorithms are central to studies on
Landsat TM image processing, classification and
environmental applications (Esche and Franklin,
2002; Lemenkova, 2020b; Chen et al, 2020; Xu and
Wunsch, 2005). Both ISODATA and K-means are
popular and widely used unsupervised classification
methods (Kanungo et al,, 2002; Forgey, 1965; Arya et
al, 2004; Murariu et al.,, 2018) both in general data
analysis and in remote sensing applications and can
be recommended in further studies.

The presented work revealed that the use of
Landsat TM satellite imagery and various approaches
of remote sensing data processing also continues
previous applications of Landsat TM (Liu et al. 2010;
Zhao et al. 2016; Mondal et al., 2020; Zerrouki et al.
2021). Moreover, clustering is an effective method of
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satisfying new conditions are split again, and smaller
clusters reassigned according to the proximity of
pixels are merged (Tou and Gonzalez, 1974). The
algorithms continue until the number of iterations
reaches the number of defined classes.
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image processing in environmental mapping and
vegetation monitoring using SAGA GIS, producing
both cartographic maps and statistical graphs and
tables. However, various approaches in classification
techniques (both supervised and unsupervised)
applied for satellite images may lead to ambiguities
and difficulties to accurately interpret the land cover
types. Noise, such as atmospheric effects, cloudiness
or technical stripes, is still a challenge in the Landsat
scenes with existing applications on solving these
problems (Mitchell et al.,, 1977; likura, 2002; Deng et
al. 2016).

For the selected study area, the final map
includes the following land cover types: grass, forest,
elevated areas, flat areas, ocean, bare ground, ground,
water, ice, mountains. A noted discrepancy between
the two approaches can be a recommended direction
in further studies on Landsat TM image processing in
the optimization of cartographic techniques using
remote sensing data by SAGA GIS.

An accurate method for mapping vegetation and
detecting land cover types aims to harmonize the
existing methods of geospatial data processing using
the advanced GIS software combined with various
mathematical algorithms of machine learning.
Compared to the traditional GIS mapping (Savulescu
and Mihai, 2011; Suetova et al, 2005; Annys et al.
2014; Vilcek and Koco, 2018), the machine learning
approach enables more rapid, accurate and precise
mapping (Lemenkova, 2020c, 2020d, 2021b, 2021c).
An outcome of the machine methods in environmental
cartography aims at optimizing the techniques of
remote sensing data processing for forest and
vegetation monitoring (Zaimes et al, 2019). This
study contributed to the existing research by
presenting methods of machine learning cartographic
techniques in environmental agricultural studies.
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